Planning with Preferences and Trajectory Constraints
by Integer Programming

Menkes van den Briel

Arizona State University
Tempe AZ, 85287-8809
menkes@asu.edu

Abstract

We present an integer programming approach for han-
dling preferences and trajectory constraints in plan-
ning. Our main aim is to illustrate through examples
how simple it is to express preferences and trajectory
constraints by linear constraints over 0-1 variables. We
are currently in the process of incorporating these con-
straints in the context of efficient integer programming
encodings that we developed recently.

Introduction

Given the recent success of integer programming ap-
proaches to automated planning (van den Briel, Vossen,
& Kambhampati 2005), we believe that these ap-
proaches are a good avenue to explore further both
because of the recent improvements, and the fact
that with preferences, planning becomes an optimiza-
tion problem, which integer programming is naturally
equipped to handle.

Preferences and trajectory constraints are two new
language features in PDDL3.0 that can be used to ex-
press hard and soft constraints on plan trajectories, and
that can be used to differentiate between hard and soft
goals. Hard constraints and goals define a set of condi-
tions that must be satisfied by any solution plan, while
soft constraints and goals define a set of conditions that
merely affect solution quality.

In particular, preferences assume a choice between
alternatives and the possibility to rank or order these
alternatives. In PDDL3.0, preferences can be defined
on states, on action preconditions, on trajectory con-
straints, or on some combination of these. Since prefer-
ences may or may not be satisfied for a plan to be valid
they impose soft constraints or goals on the planning
problem. Trajectory constraints, on the other hand,
define a set of conditions that must be met throughout
the execution of the plan. They can be used to express
control knowledge or simply describe restrictions of the
planning domain. Since trajectory constraints define
necessary conditions for a plan to be valid (except in
the case where the trajectory constraint is a preference)

Copyright (© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Subbarao Kambhampati
Department of Industrial Engineering Department of Computer Science
Arizona State University
Tempe AZ, 85287-8809
rao@asu.edu

Thomas Vossen
Leeds School of Business
University of Colorado at Boulder
Boulder CO, 80309-0419
vossen@colorado.edu

they impose hard constraints or goals on the planning
problem.

Neither preferences nor trajectory constraints have
yet gotten a lot of attention from the planning com-
munity, but the importance of solution quality and the
efficient handling of hard and soft constraints and goals
has increasingly been addressed by some recent works.

Planning with preferences is closely related to over-
subscription planning. In oversubscription planning
goals are treated as soft goals as there are not enough
resources to satisfy all of them. This problem has been
investigated by Smith (2004) and further explored by
several other works.

Preferences, however, are more general than soft
goals as they also include soft constraints. Son and
Pontelli (2004) describe a language for specifying pref-
erences in planning problems using logic programming.
Their language can express a wide variety of prefer-
ences, including both soft goals and soft constraints,
but it seems that it has not been used for testing yet.
Empirical results for planning with preferences are pro-
vided by Rabideau, Engelhardt and Chien (2000) and
Brafman and Chernyavsky (2005). Rabideau, Engel-
hardt and Chien describe an optimization framework
for the ASPEN planning system, and Brafman and
Chernyavsky describe a constraint based approach for
the GP-CSP planning system.

Planning with trajectory constraints is closely re-
lated to reasoning about temporal control knowledge
and temporally extended goals. Edelkamp (2005) han-
dles trajectory constraints by converting a PDDL3.0
description into a PDDL2.2 description and then using
a heuristic search planner.

In this paper we show numerous examples of how to
express preferences and trajectory constraints by linear
constraints over (-1 variables. These constraints would
need to be added to the integer programming formu-
lation of the planning problem. Currently, we are still
in the process of incorporating these constraints in the
formulations described by van den Briel, Vossen and
Kambhampati (2005).

The organization of this this paper is as follows. The
next section is concerned with the formulation of integer
optimization problems, that is, how to translate a ver-
bal description of a problem into mathematical state-



ment. In particular, we will show how we can use 0-1
variables to model different relations between events.
We then show various planning examples for both sim-
ple preferences and qualitative preferences, and some
concluding remarks will be given at the end.

Modeling with 0-1 Variables

Integer programming is a powerful and natural mod-
eling framework for solving optimization problems in-
volving integer decision variables. The case where the
integer variables are restricted to be 0 or 1 are referred
to as 0-1 programming problems or binary integer pro-
gramming problems. In mathematical programming,
0-1 variables are commonly used to represent binary
choice, where binary choice is simply a choice between
two things. For example, consider the problem of decid-
ing whether an event should or should not occur. This
decision can be modeled by a binary variable x, where
x = 1, if the event occurs and, z = 0, if the event does
not occur. Depending on the problem being considered,
the event itself could be almost anything. For example,
in scheduling, an event x could represent whether some
job should be scheduled before another job.

Here we show some standard relationships between
events and how they can be modeled by 0-1 variables.

o The relation that at most one of a set J of events
is allowed to occur is represented by a packing con-

straint, > ;. ;z; < 1.

e The relation that at least one of a set J of events is
allowed to occur is represented by a cover constraint,

djesti =1

e The relation that exactly one of a set J of events
is allowed to occur is represented by a partitioning
constraint, » ;. ;x; = 1.

e The relation that neither or both events 1 and 2 must
occur, that is, event 1 equals event 2, is represented
by the linear equality zo — x1 = 0.

e The relation that event 2 can occur only if event 1
occurs, that is, event 2 implies event 1, is represented
by the linear inequality zo — 1 < 0.

Sometimes, the occurrence of an event is limited to
a set of pre-specified time periods 1 < t < T. The
decision whether an event should or should not occur
at time period ¢ can can be modeled by a time-indexed
binary variable x;, where x; = 1, if the event occurs at
time period ¢ and, z; = 0, if the event does not occur
at time period t. For example, in planning, an event x;
could represent the execution of an action or the truth
value of a proposition at a specific plan step.

Here we show some standard relationships between
time dependent events and how they can be modeled
by time-indexed 0-1 variables.

e The relation that event 1 may occur at most once
during the time horizon, is represented by the linear
inequality >, z1, < 1.

e The relation that event 1 must occur sometime dur-
ing the time horizon, is represented by the linear in-
equality Y, x14 > 1.

e The relation that if event 1 occurs, event 2 must occur
sometime-before event 1, is represented by the linear
inequalities 21; < >, ;o forall 1 <t < T.

e The relation that if event 1 occurs, event 2 must occur
sometime-after event 1, is represented by the linear
inequalities 1+ < >, o op 22 forall 1 <t <T.

e The relation that event 1 must always occur is rep-
resented by the linear equalities z;; = 1 for all
1<t<T.

e The relation that event 1 must occur at the end of
the time horizon is represented by the linear equality
1,7 = 1.

Note that most of these standard relationships co-
incide with the new modal operators: at-most-once,
sometime, sometime-before, sometime-after,
always, at end, in PDDL3.0. Even though there some
differences in semantics, this suggests that modeling
these modal operators and the preferences and trajec-
tory constraints that are expressed by them through
integer programming should be rather straightforward.

In the next two sections we give various examples of
how to model preferences and trajectory constraints by
linear constraints over 0-1 variables. The examples are
all borrowed from the International Planning Competi-

tion resources !.

Simple Preferences

Simple preferences are preferences that appear in the
goal or that appear in the preconditions of an action.
Goal preferences can be violated at most once (at the
end of the plan), whereas precondition preferences can
be violated multiple times (each time the corresponding
action is executed).

For each goal preference in the planning problem we
introduce a 0-1 variable p, where p = 1, if the goal
preference is violated and, p = 0 if the goal preference
is satisfied. Similarly, for each precondition preference
for action a at step ¢t (1 < ¢t < T) we introduce a
0-1 variable p,¢, where p,; = 1, if the precondition
preference is violated for action a at step ¢ and, p, ¢+ =
0 if the precondition preference is satisfied for action
a at step t. This way all violations can be counted
for separately and given different costs in the objective
function of the formulation.

Constraints for goal and precondition preferences are
easily modeled by integer programming. There are only
finitely many operators in PDDL3.0, including some
standard operators like or, and, and imply, which can
all be represented by one or more linear constraints.

Examples

In the examples we will use variables z, ; to denote the
execution of an action a at step ¢, and use variables y;

"http://zeus.ing.unibs.it /ipc-5/



to denote the truth value of a fluent f at step t. This is
slightly different from the notation and variables used in
the formulations by van den Briel, Vossen, and Kamb-
hampati 2005, but it provides a concise representation
of the resulting constraints.

In PDDL3.0, the goal preference p; “We would like
that personl is at city2” is expressed as follows.

(:goal (and (preference pl
(at personl city2))))

The inequality corresponding to preference p; is
given by:

D1 Z 1- Yat personl city2,T (1)

Thus preference p; is violated (p; = 1) if personl is not
at city2 at the end of the plan (Yat personi city2,7 = 0).

The goal preference p, “We would like that personl
or person2 is at city2” is expressed as follows.

(:goal (and (preference p2 (or
(at personl city2) (at person2 city2)))))

The inequality corresponding to preference po is
given by:

D2 Z 1- Yat personl city2,T — Yat person2 city2,T (2)

Now, preference p, is violated if neither personl nor
person2 is at city2 at the end of the plan. Preference
po is satisfied when either or both personl and person2
are at city2 at the end of the plan.

The goal preference ps “We would like that person2
is at cityl if personl is at cityl” is expressed as follows.

(:goal (and (preference p3 (imply
(at personl cityl) (at person2 city1)))))

The inequality corresponding to preference ps is
given by:

P3 = Yat personl cityl, T — Yat person2 cityl,T (3)

So preference p3 is violated if person2 is not at cityl
while personl is.

The goal preference py “We would like that person3
and person4 are at city3” is expressed as follows.

(:goal (and (preference p4 (and
(at person3 city3) (at person4 city3)))))

Note that preference ps is very similar to prefer-
ence p; with the exception that p, is defined over
a conjunction of fluents. For each fluent in the
conjunction we will state a separate constraint, thus
the inequalities corresponding to preference p4 are
given by:

2! Z 1- Yat person3 city3,T (4)
Py >1— Yat persond city3, T (5)

Now, preference p4 is violated if either or both person3
and person4 are not at city3 at the end of the plan.

Preferences over preconditions are different from
goal preferences as they depend on both the execution
of an action and on the state of the precondition of that
action. Moreover, a precondition preference is defined
for each plan step ¢, where 1 < ¢ < T. In PDDL3.0, the
precondition preference psay2q7c17¢2,¢ “We would like
that some person is in the aircraft” whenever we fly air-
craft ?7a from city ?cl to city 7c2 is expressed as follows:

(:action fly
:parameters (7a - aircraft 7cl ?c2 - city)
:precondition (and (at 7a 7cl)
(preference pb
(exists (?p - person) (in ?p 7a))))
:effect (and (not (at 7a 7cl))
(at 7a 7c2)))

The inequalities corresponding to each ground
fly ?a ?cl ?c¢2 action is given by:

D5 fly?a?cl?c2,t = Ty ?a ?cl 7¢2,6 — g Yin 7p 7at
?
’p

VI<t<T (6)

Thus, preference ps ay2a2c17¢2,¢ is violated at step t if
we fly aircraft ?a from city 7cl to city 7¢2 at step ¢
(2fiy 7a 7c1 7¢2,4 = 1) without having any passenger 7p
onboard at step ¢ (Yin 7p 7a,¢ = 0, for each ?p).

Qualitative Preferences

In propositional planning, qualitative preferences in-
clude trajectory constraints and preferences over trajec-
tory constraints none of which involve numbers. Given
the space limitations we will mainly concentrate on the
trajectory constraints here that use the new modal op-
erators of PDDL3.0 in this section.

There is a general rule of thumb for the operators
forall and always. forall indicates that the tra-
jectory constraint must hold for each object to which
it is referring to. For example, forall (?b - block)
means that the trajectory must hold for each instantia-
tion of 7b, thus we generate the trajectory constraint for
all blocks 7b. always in propositional planning is equiv-
alent to saying for all ¢, thus we generate the trajectory
constraint for all £ where 1 < ¢t <T.

Constraints for trajectories are easily modeled by in-
teger programming through observing the different op-
erators carefully. It is often the case, that the trajec-
tory constraint simply represent one of the standard
relationships described earlier in this paper.

Examples

In PDDL3.0 the trajectory constraint “A fragile block
can never have something above it” is expressed as
follows.

(:constraints (and (always (forall (?b - block)
(implies (fragile 7b) (clear 7b))))))



The inequality corresponding to this trajectory
constraint corresponds to the relation that fragile
implies clear for all blocks 7b, for all steps ¢, where
1<t <T. It is given by:

Yfragile 7b,t — Yclear ?b,t < 0 v7b7 1 <t< T (7)

The trajectory constraint “Each block should be
picked up at most once” which is expressed as follows.

(:constraints (and (forall (7b - block)
(at-most-once (holding ?7b)))))

It translates to an at most once relation for all
blocks 7b and is given by:

Yholding ?b,0 + g
a€A,1<t<T:holding b€ ADD(a)

Likewise the trajectory constraint “Each block
should be picked up at least once” is expressed as
follows.

(:constraints (and (forall (7b - block)
(sometime (holding ?b)))))

This translates to a sometime relation for all
blocks 7b and is given by:

> Ynolding bt = 1 V2 (9)
t
Continuing in the same way, the trajectory con-
straint “A truck can visit cityl only if it has visited
city2 sometime before” is expressed in PDDL3.0 as
follows.

(:constraints (and (forall (7t - truck)
(sometime-before
(at 7t cityl) (at 7t city2)))))

The corresponding inequality describes a sometime-
before relationship for all trucks 7t and is given
by:

Z Yat 7t city2,s = Yat 7t cityl,t VI, 1 <t <T (10)
1<s<t

Similarly the trajectory constraint “If a taxi has
been used and it is at the depot, then it has to be
cleaned.”

(:constraints (and (forall (7t - taxi)
(sometime-after (and (at 7t depot) (used 7t))
(clean 7t)))))

This translates to a sometime-after relationship
for all taxis 7¢t. Note, however, that this trajectory
constraint has two conditions, which if satisfied,
require that taxi 7t is to be cleaned. The inequality
corresponding to this trajectory constraint is given by:

Yat 7t depot,t T Yused 7t,t — 1< E Yclean ?t,s
t<s<T

VIL1<t<T (11)

22 <1 Y (8)

Now, if taxi 7t is at the depot at step ¢ (yat 7¢ depot,t = 1)
and if it has been used (Yused 7t,¢ = 1), then it must be
cleaned sometime after step t (D, <7 Yclean 7¢,s > 1).

More examples can be presented, but we hope it is
enough to bring the point across that integer program-
ming provides a natural framework for modeling propo-
sitional planning with preferences and trajectory con-
straints.

Conclusions

We have shown numerous examples of how to model
preferences and trajectory constraints by integer pro-
gramming. The main challenge is to automatically
generate these constraints and add them to the inte-
ger programming formulation of the planning problem.
Especially, generating constraints for complicated in-
stances of preferences and trajectory constraints that
contain nested expressions can be tricky. Even though
we haven’t had the time to implement this yet, we be-
lieve this can be done.

An interesting analysis for future work would be to
see the impact on performance when preferences and
trajectory constraints are added to integer program-
ming formulation of the planning problem. Also we
would like to compare the performance of the integer
programming formulations that use preferences and tra-
jectory constraints as side constraints (as shown in the
examples in this paper) with integer programming for-
mulations that handle preferences and trajectory con-
straints which are compiled down into PDDL2.2.

References

Brafman, R., and Chernyavsky, Y. 2005. Planning
with goal preferences and constraints. In Proceedings
of the 15th International Conference on Automated

Planning and Scheduling (ICAPS), 182—-191.

Edelkamp, S. 2005. Efficient planning with state
trajectory constraints. In Sauer, J., ed., Proceed-
ings Workshop Planen, Scheduling und Konfigurieren
/ Entwerfen, 89-99.

Rabideau, G.; Engelhardt, B.; and Chien, S. 2000. Us-
ing generic preferences to incrementally improve plan
quality. In Proceedings of the 2nd NASA International
Workshop on Planning and Scheduling for Space, 11—
16.

Smith, D. 2004. Choosing objectives in over-
subscription planning. In Proceedings of the 14th In-
ternational Conference on Automated Planning and
Scheduling (ICAPS), 393-401.

Son, T., and Pontelli, E. 2004. Planning with prefer-
ences using logic programming. In Proceedings of the
7th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR), 247-260.

van den Briel, M.; Vossen, T.; and Kambhampati, S.
2005. Reviving integer programming approaches for
AT planning: A branch-and-cut framework. In Pro-
ceedings of the 15th International Conference on Au-
tomated Planning and Scheduling (ICAPS), 310-319.



