
Planning with Numerical State Variables through
Mixed Integer Programming

Menkes van den Briel
Department of Industrial Engineering

Arizona State University
Tempe AZ, 85287-8809

menkes@asu.edu

Subbarao Kambhampati
Department of Computer Science

Arizona State University
Tempe AZ, 85287-8809

rao@asu.edu

Thomas Vossen
Leeds School of Business

University of Colorado at Boulder
Boulder CO, 80309-0419

vossen@colorado.edu

Abstract

We extend the state-of-the-art IP formulations for clas-
sical planning to include resources and optimization
objectives. We present our initial findings and show
some preliminary results.

Introduction

One of the most compelling reason for using integer pro-
gramming (IP) and mixed integer programming (MIP)
techniques in planning is when the planning problem
contains numerical state variables. Numerical state
variables appear in many practical planning domains
and are often accompanied by linear numerical con-
straints and optimization criteria, which are naturally
supported by the IP framework. Traditionally, IP has
been used to tackle hard combinatorial optimization
problems that arise in the field of operation research.
However, recent work has shown that IP techniques also
show great potential in their ability to solve classical AI
planning problems and can compete with the most ef-
ficient SAT-based encodings (van den Briel, Vossen, &
Kambhampati 2005).

Currently, we are investigating the use of IP tech-
niques in numerical planning by extending the state-
of-the-art IP formulations for classical planning and by
adding on the work of Kautz and Walser (1999). We
will exploit the strength of IP techniques to solve op-
timization problems with numerical constraints, to ex-
tend to AI planning problems that involve numerical
state variables and numerical constraints. Even though
we are still in the early stages of our research, our first
observations and preliminary results suggest that we
can improve previous IP approaches to solve these type
of planning problems more effetively. Below we will give
a brief summary of our IP formulations and show some
initial results.

Numerical State Variables

We often refer to numerical state variables as resources.
Heuristics for planning with resources have been studied
by several different works (Do & Kambhampati 2001;
Halsum & Geffner 2001; Hoffmann 2002; Refandis &
Vlahavas 2000). Studies on IP formulations for resource

planning, however, are not as plentiful. Wolfman and
Weld (1999) use LP formulations in combination with
a satisfiability-based planner to solve resource planning
problems, and Kautz and Walser (1999) use IP formu-
lations for resource planning problems that incorporate
action costs and complex objectives.

In order to reason about resources, actions are ex-
tended to include resource preconditions and effects.
Koehler (1998) provides a general framework in which
a resource precondition is a simple linear inequality that
must hold in each state where the action is applicable,
and the action effects are to produce (increase), con-
sume (decrease), or provide (assign) the value of a re-
source. A resource is called reusable if it can only be
borrowed, that is, it cannot be consumed or produced
by any action. In all other cases a resource is called
consumable. A reusable resource is sharable if it can be
borrowed by more than one action at the same time,
otherwise it is non-sharable.

The AIPS-2002 planning competition introduced sev-
eral planning domains with resources. The language
that was used in this competition, PDDL2.1 (Fox &
Long 2003), incorporates the possibility to define nu-
merical constraints and effects on numerical state vari-
ables. Table 1 gives all the numeric domains of this
competition and lists all the resource variables. If there
exists an action in the domain that has an effect on a
resource variable, then that resource variable is listed
in the corresponding action effect column. In addition,
a type and bounds (where C is some constant) on the
resource are given.

We say a resource is monotonic if it can only be
produced (monotonic+), or if it can only be consumed
(monotonic−). We say a resource is nonmonotonic if it
can both be produced and consumed (nonmonotonic),
and if it can be provided (nonmonotonic=). These re-
source types are used to categorize the resource con-
straints in our IP formulations.

Integer Programming Formulations

Numerical constraints such as
∑

j∈B ajxj +∑
j∈C gjyj ≤ b, where aj and gj are real num-

bers, B the set of binary variables, and C the set



Domain Increase Decrease Assign Type Bounds

Depots (current-load ?z) (current-load ?z) nonmonotonic [0, C]
(fuel-cost) monotonic+ [0,∞)

Driverlog (driven) monotonic+ [0,∞)
(walked) monotonic+ [0,∞)

Rovers (energy ?x) (energy ?x) nonmonotonic [0,∞)
(recharges) monotonic+ [0,∞)

Satellite (fuel-used) monotonic+ [0,∞)
(data-stored) monotonic+ [0,∞)

(fuel ?s) monotonic− [0, C]
(data-capacity ?s) monotonic− [0, C]

Settlers (available ?r ?v) (available ?r ?v) (available ?r ?v) nonmonotonic= [0,∞)
(available ?r ?p) (available ?r ?p) nonmonotonic [0,∞)
(space-in ?v) (space-in ?v) nonmonotonic [0,∞)
(labor) monotonic+ [0,∞)
(pollution) monotonic+ [0,∞)

UMT (weight-load-v ?v) (weight-load-v ?v) nonmonotonic [0,∞)
(volume-load-v ?v) (volume-load-v ?v) nonmonotonic [0,∞)
(volume-load-l ?l) (volume-load-l ?l) nonmonotonic [0,∞)

Zenotravel (onboard ?a) (onboard ?a) nonmonotonic [0,∞)
(total-fuel-used) monotonic+ [0,∞)

(fuel ?a) (fuel ?a) nonmonotonic= [0, C]

Table 1: The numeric domains of the AIPS-2002 planning competition

of continuous and integer variables, have received a
great deal of attention in the field of mixed integer
programming (Savelsbergh 1994). We integrate some
of the ideas presented in this field to deal with the
numerical constraints and variables that are present in
resource planning domains.

Our IP formulations for resource planning are an ex-
tension to the IP formulations given by (van den Briel,
Vossen, & Kambhampati 2005). In this presentation,
we will limit our focus on dealing with the numeri-
cal state variables, the propositional variables are dealt
with in the same way as in van den Briel, Vossen and
Kambhampati (2005). That is, propositional variables
are transformed into multi-valued state variables, and
changes in the state variables are modeled as flows in
an appropriately defined network. As a consequence,
the resulting IP formulations can be interpreted as a
network flow problem with additional side constraints.

We will use the following notation:

• A: the set of ground actions

• R: the set of resources

• T : the maximum number of plan steps

• prod(a), cons(a), prov(a): the set of resources that
appear respectively as produce, consume, provide ef-
fects for action a ∈ A

• producea,r, consumea,r, providea,r: the amount of
resource r ∈ R that is respectively produced, con-
sumed, provided by action a ∈ A

In our formulations we use actions and numerical state
variables, which we define as follows:

• xa,t ∈ {0, 1}, for a ∈ A, 1 ≤ t ≤ T ; xa,t is equal to 1 if
action a is executed at plan step t, and 0 otherwise.

• zr,t ≥ 0, for r ∈ R, 1 ≤ t ≤ T ; zr,t represents
the value of resource r at plan step t. zr,t can be
real or integer-valued and may be bounded from
above. For now, we will assume that that each re-
source has a lower bound that can be normalized to 0.

Numerical state variables add constraints to the plan-
ning problem and they may appear in the optimization
criteria of the planning problem. Next, we will discuss
what constraints need to be added to the IP formulation
in order to model the different resources.

Monotonic resources

Resources that behave monotonically can be modeled
without introducing numerical state variables to the IP
formulation. We can simply deal with these resources
by adding them implicitly to the model. Let Rmon+ and
Rmon− be the set of resources of type monotonic+ and
monotonic− respectively. If the optimization criteria
requires a monotonic resource to be minimized then we
can simply setup the following objective function:

MIN
∑

a∈A,1≤t≤T,r∈Rmon+:r∈prod(a)

producea,rxa,t +

∑

a∈A,1≤t≤T,r∈Rmon−:r∈cons(a)

consumea,rxa,t

Instead of representing monotonic resources by nu-
merical state variables, we can simply deal with them



by directly working on the action effects. In case a
monotonic resource is bounded then we add an extra
constraint to satisfy this bound. For every monotonic+

resource r with an upper bound Ur we must add the
following constraint:

∑

a∈A,1≤t≤T,r∈Rmon+

producea,rxa,t ≤ Ur

Similarly, for every monotonic− resource r with a
lower bound Lr and an initial value Ir we must add
the following constraint:

∑

a∈A,1≤t≤T,r∈Rmon−

consumea,rxa,t ≤ Ir − Lr

Note that in numeric planning domains where all re-
sources are unbounded and monotonic, like the AIPS-
2002 numeric driverlog domain, resource planning re-
duces to classical planning with cost sensitive actions.

Nonmonotonic resources

Resources that are nonmonotonic require the use of nu-
merical state variables in the IP formulation. Since ac-
tions may increase or decrease the value of the resource,
we need to keep track of their value over time. Let Rnon

be the set of nonmonotonic resources only affected by
produce and consume effects of actions, and let Rnon=

be the set of nonmonotonic resources that are affected
by provide effects of actions. If nonmonotonic resources
are to be minimized then we can add them to the ob-
jective function as follows:

MIN
∑

a∈A,1≤t≤T,r∈Rnon∪Rnon=:r∈prod(a)

producea,rxa,t +

∑

a∈A,1≤t≤T,r∈Rnon∪Rnon=:r∈cons(a)

consumea,rxa,t

Also for each nonmonotonic resource r ∈ Rnon we
must keep track of its value, hence we have the con-
straint:

zr,t−1 +
∑

a∈A,r∈Rnon:r∈prod(a)

producea,rxa,t =

∑

a∈A,r∈Rnon:r∈cons(a)

consumea,rxa,t + zr,t

When an action has a provide effect on a resource
r ∈ Rnon= then the constraints for keeping track of the
resource is more involved. In this case we currently use
the linear inequalities as described by Kautz and Walser
(1999).

Preliminary Results

For our preliminary studies of the effectiveness of our
approaches we compare to the work of Kautz and

1SC KW
Problem Obj Nodes Time Nodes Time
(1, 2, 3) 3600 0 0.01 0 0.02
(1, 3, 3) 6780 0 0.02 0 0.04
(1, 6, 3) 9762 15 0.38 56 0.40
(2, 4, 3) 4500 0 0.05
(2, 5, 3) 5644 42 0.10
(2, 4, 4) 3939 4 0.14
(2, 5, 4) 5014 2 0.19
(2, 6, 4) 9273 606 0.28
(3, 6, 5) 8914 292 0.49
(3, 7, 5) 14919 2195 0.71
(3, 8, 5) 21164 717 0.96

Table 2: Results for the airplane domain, where the
problem number is given by (#airplanes, #passengers,
#cities).

Walser (KW). We use the airplane domain, which is
a modified version of the airplane example from Pen-
berthy and Weld (1994) and Koehler (1998). One or
more airplanes can fly between a number of different
airports. A fly action consumes fuel and a refuel ac-
tion provides fuel, hence fuel is a nonmonotonic= re-
source. The goal is to take each passenger to his or her
destination while minimizing the total fuel consump-
tion. We setup an IP formulation, which we call 1SC,
where the propositional variables are modeled as in van
den Briel, Vossen, and Kambhampati (2005) and the
resource is modeled as in Kautz and Walser (1999).
Hence, the main difference in these two approaches is
how the propositional variables are modeled. Also, the
KW formulation is specifically modeled for this domain
with one airplane, whereas our 1SC formulation is do-
main independent.

Some results for the airplane domain are given in Ta-
ble 2. All problems were solved to optimality, that is,
the objective value represents the minimum amount of
fuel needed to transport the passengers. Comparative
analysis was made difficult by the fact that the KW for-
mulation only works for single airplane scenarios, while
our 1SC formulation can handle multiple airplanes and
can be applied to a wide variety of other numerical
planning domains. Nevertheless, on the problems that
both approaches were able to solve our formulation out-
performed the KW formulation in terms of number of
branch-and-bound nodes and solution time.

Future Work

Integer programming provides a strong framework for
dealing with numerical constraints and optimization
criteria. So far, only a few researchers have looked into
the application of IP techniques in planning with re-
sources, and we believe that there is significant room
for improvement. Even though we are still in the early
stages of our research, there are some potential cutting
planes that we may be able to detect and add to our IP
formulations. For example, the bound constraints on



the monotonic resource variables can be interpreted as
0-1 knapsack constraints, and so, we could find knap-
sack cover inequalities. The constraints on the non-
monotonic resources look very similar to constraints we
see in lot-sizing problems (Pochet & Wolsey 1995), and
so, we could find flow cover inequalities.

Besides adding cutting planes to our IP formulations,
we are also looking at different ways to generalize the
notion of action parallelism in planning domains that
involve resources.

References

Do, M., and Kambhampati, S. 2001. Sapa: A domain-
independent heuristic metric temporal planner. In
Proceedings of the European Conference on Planning
(ECP-01), 109–120.

Fox, M., and Long, D. 2003. PDDL2.1: An extension
of PDDL for expressing temporal planning domains.
Journal of Artificial Intelligence Research 20.

Halsum, P., and Geffner, H. 2001. Heuristic planning
with time and resources. In Proceedings of the Sixth
European Conference on Planning (ECP-01), 121–132.

Hoffmann, J. 2002. Extending FF to numerical state
variables. In Proceedings of the 15th European Con-
ference on Artificial Intelligence (ECAI-02, 571–575.

Kautz, H., and Walser, J. 1999. State-space plan-
ning by integer optimization. In AAAI-99/IAAI-99
Proceedings, 526–533.

Koehler, J. 1998. Planning under resource constraints.
In Proceedings of the Thirteenth European Conference
on Artificial Intelligence (ECAI-98), 489–493.

Penberthy, J., and Weld, D. 1994. Temporal planning
with continuous change. In Proceedings of the 12th
National Conference on Artificial Intelligence, 1010–
1015.

Pochet, Y., and Wolsey, L. 1995. Combinatorial Op-
timization: Papers from the DIMACS Special Year,
volume 20 of DIMACS Series in Discrete Mathemat-
ics and Computer Science. American Mathematical
Society. chapter Algorithms and reformulations for
lot-sizing problems, 245–294.

Refandis, I., and Vlahavas, I. 2000. Heuristic planning
with resources. In Proceedings of the Fourteenth Euro-
pean Conference on Artificial Intelligence (ECAI-00),
521–525.

Savelsbergh, M. 1994. Preprocessing and probing tech-
niques for mixed integer programming. ORSA Journal
on Computing 6(4):445–454.

van den Briel, M.; Vossen, T.; and Kambhampati, S.
2005. Reviving integer programming approaches for
ai planning: A branch-and-cut framework. In Pro-
ceedings of the Fifteenth International Conference on
Automated Planning and Scheduling (ICAPS-05), (to
appear).

Wolfman, S., and Weld, D. 1999. The LPSAT engine
and its applicationto resource planning. In Proceedings

of the 18th International Joint Conference on Artifi-
cial Intelligence (IJCAI-99), 310–317.


